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1. Introduction

The understanding of the nature of spacetime singularity, and whether and how it is re-

solved, is one of the most important question for a quantum theory of gravity. Recently,

powerful nonperturbative formulations of string theory such as Matrix theory [1, 2] and

AdS/CFT correspondence [3 – 6] have been put forward and intensively studied for various

applications. While much work has been devoted to the studies of blackhole singulari-

ties [7], there were much fewer studies on spacetime singularities of cosmological type. It

is desirable to apply these ideas to the studies of time-dependent backgrounds, and try to

use them to learn about spacetime singularity. See [8] for recent reviews on approaches to

understanding spacelike or null singularities in string theory.

In [9], we constructed a supersymmetric AdS/CFT correspondence for a class of time-

dependent IIB backgrounds. The supergravity (SUGRA) backgrounds have nontrivial time

dependence through a null coordinate. Similar SUGRA backgrounds were also constructed

in [10, 11]. In addition we have also constructed the dual gauge theory explicitly [9].

The gauge theory features a time-dependent gauge coupling and a time-dependent ax-

ion coupling. The proposed gauge/gravity duality thus constitutes a natural starting
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point for understanding time-dependent superstring backgrounds from the super Yang-

Mills (SYM) theory. Our work was motivated by the earlier works of [12] which proposed

to use AdS/CFT correspondence to study a big crunch cosmology; and [13] which proposed

to use matrix string theory to study null singularities. For a different approach of applying

AdS/CFT to time-dependent backgrounds see [14]. See also [15] for related works.

In our construction [9], the SUGRA metric admits cosmological, null-like singularities

for some class of dilaton and axion field configurations. Moreover, since these singularities

are situated at a constant x+ (rather than localized at finite radial coordinate), their

presence can in principle be detected by quantities computed in the dual field theory.

In [9], we have carried out a generic analysis at the free field level. We found that the field

theory two-point functions computed from the gravity side using the duality is different

from the one computed directly from the field theory, which up to a rescaling of fields, is the

same as the one defined for an ordinary Minkowskian spacetime. In particular, the SUGRA

result is sensitive to the singularity of the spacetime, while the gauge theory result does

not see the singularity. That the results differ is not surprising since the SUGRA result

is valid in the regime where the t’Hooft coupling is large, while the field theory result is

valid when the t’Hooft coupling is small. We interpreted our results as suggesting that

the spacetime singularity seen at the SUGRA level could be resolved by α′ effects of string

theory. Similar analysis has also been performed in [16] with the same conclusion.

While this might look encouraging, the following remarks prompt immediately for more

detailed studies in the dynamics of the gauge theory. First, the regularity of the field theory

2-point function is demonstrated only at the free field level. When interaction is included,

we expect the answer to depend on the coupling, as well as its higher time derivatives. It

is therefore possible that the field theory result could reproduce the SUGRA singularity

once quantum corrections are included. Secondly, in our work [9], we pointed out that

the Einstein equation (see (2.2) below), which constitutes a constraint on the dilaton and

axion field, can be obtained from the requirement of finiteness of the energy momentum

tensor in gauge theory. However, this argument is not completely satisfactory as it is based

on the validity of the duality. In [9], we conjectured that the Einstein equation could be

derived from the the gauge theory at the quantum level. Achieving this would help us

to understand better how quantum properties of SYM is mapped holographically to the

geometrical properties of spacetime.

The purpose of this paper is to go beyond the free field level analysis and to try to

understand the role of the SYM quantum effects in the duality. In particular we propose to

identify bulk metric properties from the Wilsonian effective action obtained by intergrating

out the high momentum modes.

In section 2 we review our proposal of the time-dependent AdS/CFT duality. In

section 3, we demonstrate that by a change of variables, both the SUGRA metric and the

SYM Lagrangian can be written in a simpler form. We restate our duality proposal in this

frame. In section 4, we present the Feynman rules for our time-dependent SYM theory. The

presence of the time-dependent gauge couplings and time-dependent theta angle modify the

interaction vertices. In section 5, we compute the 1-loop Wilsonian fermion kinetic term

and find that at the leading order of derivative expansion, it allows one to reconstruct the
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bulk metric of the gravity side. It is straightforward to include the higher order derivative

corrections to the holographically constructed bulk geometry and we discuss how spacetime

singularity could be resolved.

2. Time-dependent AdS/CFT correspondence: review

In [9], a time-dependent deformation to the original AdS/CFT correspondence was con-

structed. The non-vanishing fields consist of the Einstein metric

ds2 =
R2

u2

(

−k2(x+)dx+dx− +M2
i (x+)(dxi)2 + du2

)

+R2dΩ2
5 (i = 2, 3), (2.1)

an undeformed 5-form, and dilaton and axion fields φ(x+), χ(x+). All equations of motion

are satisfied provided

1

2
(φ′)2 +

1

2
e2φ(χ′)2 = −

∑

i=2,3

(

M ′′

i

Mi
− 2k′M ′

i

kMi

)

, (2.2)

which comes from the (++)-component of the Einstein equation.

The SUGRA solution preserves eight IIB supersymmetries. Viewed as a deformation

of the standard AdS5 × S5, half of the Poincare supersymmetry is preserved, and the

conformal supersymmetry is broken. The solution can be obtained from a near horizon

limit of a stack of D3 branes with a pp-wave on it. This gives rise to the relation between

the radius R and the dilaton [9]

R4 = 16πN〈g−1
s 〉−1l4s , (2.3)

where 〈g−1
s 〉 :=

∫

dx+k2e−φ/
∫

dx+k2 is the x+-average of the inverse of the string cou-

pling gs = eφ. This relation generalizes the celebrated relation in the original AdS/CFT

correspondence, and is a consequence of the BPS property of the stack of pp-wave D3-

branes. It is interesting to note that if 〈g−1
s 〉 diverges, which could happen if gs goes to

zero somewhere, N needs to be infinity even for finite radius R.

We also noted that the supergravity solution is invariant under the scaling transfor-

mation

u→ λu, x+ → x+, x− → λ2x−, xi → λxi. (2.4)

The same symmetry is respected by our time-dependent SYM [9].

The above metric was written down in the Rosen form. One can also perform a change

of coordinate [9] to put the metric in the following Brinkman form

ds2 =
R2

u2

(

−k2(x+)dx+dx− + h(x+, xi)(dx+)2 + (dxi)2 + du2
)

, (2.5)

where

h(x+, xi) =
∑

i=2,3

hi(x
+) (xi)2, and hi(x

+) =
M ′′

i

Mi
− 2k′M ′

i

kMi
. (2.6)

Without loss of generality, one can choose the coordinate x+ such that k(x+) = 1. It

is then easy to see that this metric has an interesting property, that is, it deviates from
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the undeformed AdS metric only by the g++ (or equivalently the g−−) component, and as

a result only the R++ component of the curvature tensor is modified. It follows that all

the invariants obtained by contracting indices of curvature tensors are exactly the same as

pure AdS space. Therefore we believe that this metric is free from stringy (α′) corrections

for the same reason why AdS is an exact consistent background. On the other hand, our

background is expected to receive gs corrections due to string loop diagrams.

Provided that the radius R defined by (2.3) is well defined, we proposed in [9] that the

quantum gravity for the time-dependent background (2.5) is dual to a SYM theory living

on the boundary metric

ds2
YM

= −k2(x+)dx+dx− + h(x+, xi)(dx+)2 + (dxi)2 (2.7)

and has a time-dependent Yang-Mills coupling and theta angle

θ

2π
+

4πi

g2
YM

= χ+ ie−φ. (2.8)

The Lagrangian density is 1 L = LYM + LX + LΨ + Lχ, where [9]

LYM =

√−g
g2

YM

Tr

(

−1

4
gµµ′

gνν′

FµνFµ′ν′

)

, (2.9)

LX =

√−g
g2

YM

Tr

(

−1

2
gµνDµX

aDνX
a +

1

4
[Xa,Xb]2

)

, (2.10)

LΨ =

√−g
g2

YM

Tr

(

1

2
Ψ̄γµ[−iDµ,Ψ] +

1

2
Ψ̄γa[Xa,Ψ]

)

, (2.11)

Lχ =
1

8π2
Tr

(

−1

4
θ(x+)ǫµνρσFµνFρσ +

i

4
θ′(x+)Ψ̄Γ2Γ3Γ+Ψ

)

. (2.12)

Here Ψ is a Majorana spinor, Dµ = ∂µ + iAµ and Fµν = ∂µAν − ∂νAµ + i[Aµ, Aν ] (µ, ν =

+,−, 2, 3; a = 4, · · · , 9). The spin connection term vanishes since the only nonvanishing

components of the spin connection are

ωi+ =
1

2
(∂ih)E

+, ω−+ =
k′

k
E+, (2.13)

where EA denotes the vielbein, and so

Ψ̄γµωµABΓABΨ ∼ Ψ̄Γ−Ψ = 0, (2.14)

where we have used the fact that Γ0Γµ is symmetric for Majorana representation.

On the gravity side, the SUGRA solution is invariant under 8 supersymmetries satis-

fying

Γ+ǫ = 0, (1 − Γr)ǫ = 0, (2.15)

where the r-direction is defined from substituting u = er in the metric. On the gauge theory

side, we have Γ+ǫ = 0 and the usual conformal SUSY transformation with ǫ = xµΓµη for

1There was a typo in the fermionic part of the axion action Sχ in our previous paper [9]. χ should be

replaced by χ′ as in (2.12).
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N = 4 SYM is broken. We have also normalized Lχ so that when θ′ = 0 it reduces to the

standard θ-Lagrangian, i.e., it is θ times the instanton number.

An interesting feature of our supergravity solutions is that they can admit singularity.

This happens when the Ricci curvature component R++ becomes singular, in which case

the null geodesic along x+ cannot be extended beyond the place where R++ blows up.

Using the Einstein equation, this happens when the scalar field combination

1

2
(φ′)2 +

1

2
e2φ(χ′)2 (2.16)

diverges. Although the classical background may be singular, the SYM theory appears to

be well defined and provides a non-perturbative definition of the quantum gravity theory.

The singularity is lightlike. This is different from the spacelike singularity which occurs for

the standard big bang and blackhole. Nevertheless, the understanding of the nature and

possible resolution of a null singularity is still of great interest.

3. AdS/CFT duality in simplifying variables

3.1 Simplifying the SYM by change of variables

In [9] we have performed a free field theory analysis of the duality written with respect

to the frame (2.1). The two-point function was computed for the case M2 = M3 = M .

The field theory result was found to be completely regular. In fact, apart from a rescaling

of the field, the two-point function takes exactly the same form as for a theory defined

on a Minkowski space [9], see also [16]. This indeed has a simple explanation. In this

section, we will explain the origin of this scaling and show that the SYM theory on this

time-dependent background is exactly the same as a SYM theory on the flat background

with a time-dependent coupling.

Let us consider this case with M2 = M3 = M . Without loss of generality, we can

choose the coordinate x+ such that k(x+) =
√

2M(x+), so

ds2 = −2M2dx+dx− +M2dx2
i . (3.1)

For this metric, √−g = M4, gµν = M2ηµν . (3.2)

Let us look at the SYM action term by term. First, the YM term (2.9) becomes

SYM =

∫

d4x
1

g2
YM

Tr

(

−1

4
ηµνηαβFµαFνβ

)

, (3.3)

i.e. one which is defined on a flat metric ηµν . This has also been noted by [16]. In the

following we show that the same is true for the scalar and the fermion action. Motivated

by the above mentioned rescaling of scalar fields, we introduce the rescaled fields

Xa = M−1Y a, Ψ = M−3/2ψ. (3.4)
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The scalar action (2.10) becomes

SX =

∫

d4x
1

g2
YM

Tr

[

ηµν

[

−1

2
DµY

aDνY
a − 1

2

(

g2
YM
∂ν

∂µM

g2
YM
M

− ∂µM

M

∂νM

M

)

Y a2

]

+
1

4
[Y a, Y b]2

]

=

∫

d4x
1

g2
YM

Tr

[

−1

2
ηµνDµY

aDνY
a +

1

4
[Y a, Y b]2

]

, (3.5)

where in the last line we used the fact that M(x+) and gYM(x+) only depend on x+. The

fermion action 2 becomes

SΨ =

∫

d4x
1

g2
YM

Tr

[

ψ̄Γµ[−iDµ, ψ] +
3i

2

∂µM

M
ψ̄Γµψ + ψ̄Γa[Y a, ψ]

]

=

∫

d4x
1

g2
YM

Tr

[

ψ̄Γµ[−iDµ, ψ] + ψ̄Γa[Y a, ψ]

]

, (3.6)

where we have introduced the flat space Gamma matrices ΓA. It is related to the curved

space ones γA by

γA = M−1ΓA. (3.7)

Thus we see that, remarkably, in terms of the new field variables (Aµ, Y
a, ψ), the dual

SYM is defined on a flat base space! The curved metric of the bulk simply drops out.

The only difference from the ordinary N = 4 SYM is the presence of the time-dependent

gauge couplings gYM and χ. This difference does not appear at the tree level, and explains

why the field theory two-point functions coincide with the usual expressions when properly

rescaled fields are used to express the Green’s functions [9]. In addition, our analysis here

implies that this is true for a general n-point function at the tree level. This result for the

general n-point function was first obtained in [16] using a path-integral argument. Here

we see that both the choice of the rescaled variables and the fact that the free field theory

Green’s function is the same as the Minkowski one have a very simple explanation.

From the viewpoint of SYM, if the coupling gYM approaches to zero at a certain point,

it only implies that the theory is almost free in the neighborhood of that point. But

from the viewpoint of the bulk supergravity, this could correspond to a singularity (e.g.

geodesic incompleteness) in the bulk metric [9]. Understanding the holographic duality of

this situation shall lead us to a deeper understanding of the nature of spacetime singularity.

3.2 Simplifying the bulk metric by change of variables

The fact that there exists a choice of variables where the SYM theory takes on a simpler

form suggests that the same must be true also for the SUGRA side. We will demonstrate

that this is indeed the case now.

2With the choice of vielbein E+ = M2dx+, E− = dx−, Ei = Mdxi, the nonvanishing component of the

spin connection is ωi
+ = M ′/M3Ei. We note again the spin connection term in the fermion KE term is

zero.
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The metric for the deformed AdS part of the bulk is

ds2 =
R2

u2
(−2M2(x+)dx+dx− +M2(x+)dx2

i + du2), (3.8)

where i = 2, 3. Introduce the coordinate change

û := u/M(x+), (3.9)

x̂− := x− − 1

2
M−1M ′û2, (3.10)

and then it is easy to show that the metric can be brought to a Brinkman form,

ds2 =
R2

û2

(

−2dx+dx̂− +
1

2
Ωû2dx+2

+ dx2
i + dû2

)

, (3.11)

where Ω is related to M of (3.8) and to the dilaton-axion fields as

Ω := −2

(

M ′′

M
− 2

M ′2

M2

)

=
1

2
(φ′)2 +

1

2
e2φ(χ′)2. (3.12)

The Ricci tensor for (3.11) is

R̂MN = −4ĝMN

R2
+ ΩδM+δN+. (3.13)

The distinguished feature of the coordinate system (3.11) is that the boundary met-

ric at û = 0 is exactly the same as the boundary of the undeformed AdS. In this frame,

the dual SYM theory is deformed only by the presence of nontrivial time-dependent cou-

plings. It is given by (3.3), (3.5), (3.6) plus the axionic terms. Moreover, the coordinate

transformation (3.9) (and (3.10)) matches the field rescaling (3.4).

We remark that the metrics (2.5) and (3.11) are special cases of the Brinkman form

of the metric

ds2 =
R2

u2

(

−k2(x+)dx+dx− + h(x+, xi, u)dx+2
+ (dxi)2 + du2

)

. (3.14)

It has the Ricci tensor

RMN =
−4gMN

R2
+ ∆δM+δN+, (3.15)

where

∆ :=
3∂uh

2u
− 1

2
(∂2

uh+ ∂2
2h+ ∂2

3h). (3.16)

And it is h = hij(x
+)xixj for (2.5) and h = Ω(x+)u2/2 for (3.11). Einstein equation

implies

∆ =
1

2
(φ′)2 +

1

2
e2φ(χ′)2. (3.17)

In the above, we have started with the AdS/CFT duality [9] expressed in the frame (2.5),

and via a series of coordinate transformations, related it to the duality expressed in the

frame (2.1), and eventually to the duality expressed in the frame (3.11). We could have
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written down the duality in the frame (3.11) directly. By following the coordinate transfor-

mation closely, we have seen how a change of coordinate in the bulk corresponds to a (local)

field re-definition in the dual SYM theory. It is possible that for more general spacetime

diffeomorphism, a non-local field redefinition in the SYM theory is required. It will be

interesting to understand this aspect better. We will analyze the duality expressed in the

frame (3.11) in the rest of the paper. And we will not write the hatˆover the coordinates

anymore. The metric of the SUGRA background reads

ds2 =
R2

u2

(

−2dx+dx− +
1

2
Ωu2dx+2

+ dx2
i + du2

)

. (3.18)

3.3 Supersymmetric Yang-Mills action

Let us now spell out explicitly the supersymmetry properties of the SYM theory that is

dual to the supergravity solution written in the frame (3.18) 3. Consider the Lagrangian

density

LB =
1

4g2
YM

Tr
(

[YM , YN ][Y M , Y N ]
)

, (3.19)

LΨ =
1

2g2
YM

Tr
(

ψ̄ΓM [YM , ψ]
)

, (3.20)

LχB = χ̂(x+)Tr

(

1

4
εµναβ [Yµ, Yν ][Yα, Yβ ]

)

, (3.21)

LχF = χ̂′(x+)Tr

(

i

4
ψ̄Γ2Γ3Γ+ψ

)

, (3.22)

for the fields Yµ ≡ −iDµ = −i∂µ +Aµ, Y
a, and ψ (µ = 0, 1, 2, 3; a = 4, · · · , 9). Here εµναβ

is the totally antisymmetrized tensor with ε+−23 = ε0123 = 1. The metric and Γ-matrices

are the ordinary Minkowski ones, gµν = ηµν and gab = δab. For convenience, we have

introduced the shorthand definition

χ̂(x+) :=
θ(x+)

8π2
=
χ(x+)

4π
. (3.23)

Consider the SUSY transformation defined as

δYµ = δAµ = −iǭΓµψ, µ = 0, 1, 2, 3, (3.24)

δY a = −iǭΓaψ, a = 4, · · · , 9, (3.25)

δψ =
i

2
[YM , YN ]ΓMN ǫ, M,N = 0, 1, · · · , 9, (3.26)

where ǫ = ǫ(x+). We have

δLB =
1

g2
YM

Tr
(

[δYM , YN ][Y M , Y N ]
)

. (3.27)

3The SUSY transformation rule in [9] was only written down for the case of a constant χ. For the general

case where χ′ 6= 0, one has to use a x+ dependent supersymmetry parameter ǫ(x+). See(3.35) below.
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It is easy to show that

δLΨ ≃ −δLB + Tr

(

−1

4

(

1

g2
YM

)

′

ǭΓMNΓ+ψ[YM , YN ] +

(

ǭ

2g2
YM

)

′

ΓMNΓ+[YM , YN ]ψ

+

(

1

g2
YM

)

′

[Y +, YM ]ǭΓMψ

)

, (3.28)

where in this subsection ≃ means equal up to total derivatives. Assuming that

Γ+ǫ = 0, (3.29)

and using ΓMNΓ+ = Γ+ΓMN + 2η+NΓM − 2η+MΓN , we have

δLB + δLΨ ≃ 2ǭ′

g2
YM

Tr
(

ΓMψ[YM , Y
+]
)

. (3.30)

Thus if χ = 0, we can take ǫ to be constant and the total action is SUSY invariant.

For general χ, the SUSY transformations of the axion Lagrangian densities are

δLχB = 2χ̂′(x+)Tr
(

ε+−jkǭΓjψ[Yk, Y
+]
)

, j, k = 2, 3, (3.31)

δLχF = χ̂′(x+)Tr
(

ǭΓMΓ2Γ3ψ[YM , Y +]
)

, (3.32)

where we assumed in the derivation that (3.29) holds. Therefore, if we choose the trans-

formation parameter to satisfy

2

g2
YM

ǫ′ = −χ̂′(x+)Γ2Γ3ǫ, (3.33)

then

δ(LB + LΨ + LχB + LχF ) = −χ̂′(x+)Tr
(

[Γ2Γ3,ΓM ]ψ[YM , Y +] − 2ε+−jkǭΓjψ[Yk, Y
+]
)

= 0, (3.34)

where we have used [Γ2Γ3,ΓM ] = δM
i · (−2)ε+−ijΓj (i, j = 2, 3 here). The equation (3.33)

is compatible with (3.29) and is solved by

ǫ(x+) = exp

(

1

4

∫ x+

0
dy+χ̂′(y+)g2

YM
(y+)Γch

)

ǫ0, (3.35)

for a constant spinor ǫ0 : Γ+ǫ0 = 0. Here Γch := Γ+Γ−Γ2Γ3 is the chirality operator and

we have used the identity Γ+Γ−ǫ0 = −2ǫ0 to simplify the expression.

4. Quantum supersymmetric Yang-Mills

To better understand the dynamical consequence of the duality, it is necessary to have a

control of the quantum properties of the SYM theory. We have just shown that there exists

a preferred choice of variables for expressing the duality. The SYM theory is defined on a

flat Minkowski space with Lagrangian density (3.19)–(3.22), the SUGRA metric is given

by (3.11). This choice of variables is an important simplification to allow for a development

of the perturbation theory, which we will turn to now.
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4.1 A further rescaling and the SYM action

For perturbative analysis, it is convenient to scale the fields further so that the kinetic terms

are as close as possible to being canonically normalized and independent of the coupling.

To achieve this, we define

Aµ = gYMAµ, Y a = gYMZ
a, ψ = gYMλ. (4.1)

Then

Fµν = gYMFµν + (∂µgYM)Aν − (∂νgYM)Aµ, (4.2)

where

Fµν := ∂µAν − ∂νAµ + igYM[Aµ,Aν ]. (4.3)

Thus the YM action simplifies to

SYM =

∫

d4x Tr

[−1

4
FµνFµν +

g′
YM

gYM

∂µAµA− + aA2
−

]

, (4.4)

where a :=
g′ 2
YM

2g2
YM

− (
g′
YM

gYM
)′. To carry out perturbation analysis, one needs to fix a gauge. It

turns out to be convenient to consider the following generalized Lorentz gauge

∂µAµ + f(x+)A− = 0, (4.5)

which is a combination of the Lorentz gauge and the axial gauge A− = 0. Using the gauge

fixing term

Sg.f. =

∫

d4x Tr

[

− 1

2ξ
(∂µAµ + f(x+)A−)2

]

, (4.6)

we have

SYM + Sg.f. =

∫

d4xTr

[

1

2
Aµ∂

2Aµ +
1

2

(

1 − 1

ξ

)

(∂µA
µ)2

+

(

g′
YM

gYM

− f

ξ

)

(∂µAµ)A− +

(

a− f2

2ξ

)

A2
−

]

+ cubic and quartic terms. (4.7)

A particular simple gauge choice is therefore given by

ξ = 1, f = g′
YM
/gYM. (4.8)

In this case,

SYM + Sg.f. =

∫

d4x Tr

[

1

2
Aµ∂

2Aµ + ãA2
−

]

+ cubic and quatic terms, (4.9)

where

ã := −
(

g′
YM

gYM

)

′

. (4.10)

– 10 –



J
H
E
P
0
2
(
2
0
0
8
)
0
5
8

Similarly, we obtain the scalar and fermion action

SX =

∫

d4xTr

[

−1

2
DµZaDµZ

a +
g2

YM

4
[Za, Zb]2

]

, (4.11)

SΨ =
1

2

∫

d4xTr
[

λ̄Γµ[−iDµ, λ] + gYMλ̄Γa[Za, λ]
]

, (4.12)

where

DµZ
a = ∂µZ

a + igYM[Aµ, Z
a] and Dµλ = ∂µλ+ igYM[Aµ, λ]. (4.13)

Finally, in terms of the rescaled fields, the axionic coupling terms become

SχB =

∫

d4x g2
YM
χ̂′ Tr

[

A−(∂2A3 − ∂3A2) −A2∂−A3 + igYMA−[A2,A3]

]

, (4.14)

SχF =

∫

d4x g2
YM
χ̂′ Tr

[−i
4
λ̄Γ2Γ3Γ−λ

]

, (4.15)

which give rise to correction to the propagators of λ and Aµ and a vertex involving

A−,A2,A3.

4.2 Feynman rules

In the following, we will consider the case when the SYM theory is defined for the whole

line −∞ < x+ < ∞. This may not be so when the SUGRA background is singular.

Later we will discuss the case when the SUGRA background has singularity (geodesic

incompleteness) at x+ = 0.

The action given above (4.9)–(4.15) in terms of the fields Za, λ,Aµ is suitable for

performing a perturbative analysis. We will treat the A2
−

term in (4.9), (4.14), (4.15) as

perturbation. The propagators for the scalar, the gauge boson and the Majorana fermions

are respectively

Kab(x) =

∫

d4p

(2π)4
−iδab

p2
eipx, a, b = 4, · · · , 9, (4.16)

Kµν(x) =

∫

d4p

(2π)4
−iηµν

p2
eipx, µ, ν = +,−, 2, 3, (4.17)

D(x) =

∫

d4p

(2π)4
ip/

p2
eipx. (4.18)

Since the form of (4.9)–(4.12) is the same as the usual N = 4 SYM theory, the

interaction vertices take the same form provided that one replaces the constant coupling

with the x+-dependent one gYM(x+). In momentum space, the usual coupling constants

gα := gYM, g2
YM

(α = 3, 4 for the 3-point and 4-point vertices respectively) get replaced by

gαδ
(4) (ΣIkIµ) → g̃αδ (ΣIkI−) δ(2) (ΣIkIi) , (4.19)

where

g̃α :=

∫

dx+ei
P

I kI+x+

gα(x+), (4.20)
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and

g3(x
+) := gYM(x+), g4(x

+) := g2
YM

(x+) (4.21)

are defined for a 3-point vertex and a 4-point vertex respectively. We also note the following

useful representation

g̃3(k1+, k2+, k3+) = gYM

(

− i
∂

∂k1+

)

δ(k1+ + k2+ + k3+) (4.22)

and

g̃4(k1+, k2+, k3+, k4+) = g2
YM

(

− i
∂

∂k1+

)

δ(k1+ + k2+ + k3+ + k4+). (4.23)

As for (4.14) and (4.15), the cubic term in the action (4.14) gives rises to a new vertex

involving A−,A2,A3 with coupling ig3
YM
χ̂′. The rest of (4.14), (4.15)

L2 :=

∫

dx g2
YM
χ̂′Tr(A−∂2A3 −A−∂3A2 −A2∂−A3), (4.24)

L3 :=

∫

dx
−i
4
g2

YM
χ̂′Trλ̄Γ2Γ3Γ−λ (4.25)

constitute corrections to the propagator.

5. Wilsonian effective action: holographic reconstruction of the bulk met-

ric

We are interested in understanding the nature of spacetime singularity from the dual

gauge theory point of view. To do this, one needs to be able to detect the properties of

the bulk spacetime, in particular its x+-dependence, from the gauge theory. The UV/IR

relation [17, 18] is the key. The relation gives a channel to probe the physics in the

interior of the bulk by looking at the dependence on Λ of SYM quantities. According to it,

introducing a momentum cutoff Λ in the SYM corresponds to bulk physics with a spatial

IR cutoff at a certain value of the radial coordinate. This suggests to introduce a cutoff

in the gauge theory. The question is which gauge theory quantity one should/could use to

probe or even reconstruct the bulk metric.

In the approach of holographic renormalization group flow [19], with certain regularity

of the metric assumed, one can reconstruct the bulk metric as a series expansion from

the boundary out of the conformal field theory data by solving the Einstein equation.

This approach won’t be helpful for problems involving spacetime singularity, where the

regularity assumption is questionable. Also Einstein equation is expected to be modified

or break down completely. A new approach is needed here.

In the following we will compute the 1-loop correction to the quadratic fermion effective

action and propose to use the UV/IR relation to reproduce the metric of the bulk from the

boundary theory. We choose to look at the kinetic term of the fermion for simplicity. The

kinetic terms of other fields will give the same information on the base space geometry due

to supersymmetry.
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Figure 1: One-loop contribution to the fermion kinetic term from gauge bosons and scalars.

5.1 1-loop Wilsonian action: fermion kinetic term

For simplicity let us take χ = 0. The fermion propagator receives 1-loop contribution from

the Feynman diagrams in figure 1 and figure 2. Both diagrams are planar. For figure 1,

summing over the contributions from the gauge and scalar fields, we have

I1 = N

∫

d4xd4yTrigYM(x+)λ̄(x)ΓMD(x− y)ΓN igYM(y+)λ(y)KMN (x− y)

= 8N

∫

d4xd4y
d4pd4q

(2π)8
TrgYM(x+)λ̄(x)

q/

p2q2
gYM(y+)λ(y)ei(p+q)(x−y)

= 4N

∫

d4xd4y
d4p

(2π)4
TrgYM(x+)λ̄(x)F (p)p/ g(y+)λ(y)eip(x−y), (5.1)

where we have used ΓMq/ΓM = −8q/ in the second step, performed a change of variables

q → q + p/2, p → −q + p/2 in the third step, and introduced the definition

F (p) :=

∫

d4q

(2π)4
1

(q − p/2)2(q + p/2)2
. (5.2)

To simplify further, we note that

∫

d4xd4y

∫

d4p

(2π)4
f1(x)F (p)p/ eip(x−y)f2(y)

=

∫

d4xd4yf1(x)
(

F (i∂y) · i∂/ yδ(x − y)
)

f2(y)

=

∫

d4xf1(x)F (−i∂) · (−i∂/ )f2(x) +

∫

d4xF (i∂) · i∂µ

(

f1(x)Γ
µf2(x)

)

, (5.3)

where f1 = gYM(x+)λ̄(x) and f2 = gYM(x+)λ(x) and we have performed an integration

by parts in the last step. The last term above vanishes since Γ0Γµ is symmetric in the

Majorana representation. Therefore we obtain

I1 = −4N

∫

d4xTrgYM(x+)λ̄(x)F (−i∂)i∂/
(

gYM(x+)λ(x)
)

. (5.4)

Now the equation of motion has i∂/ λ = quadratic in fields, therefore ∂/ λ can be treated as

zero for the fermion kinetic term we are computing. As a result, I1 simplifies to

I1 = −4N

∫

d4xTrgYM(x+)λ̄(x)F (−i∂)
(

iΓ+g′
YM
λ(x)

)

. (5.5)
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Figure 2: Contribution due to propagator corrections

The second source of contribution comes from the A2
−

vertex from (4.9). There is only

one diagram (figure 2) since only one such insertion can be made. We have

I2 = N

∫

d4xd4yd4zTrigYM(x+)λ̄(x)Γ+D(x− y)Γ+igYM(y+) ×

×λ(y)K+−(x− z)2iã(z+)K+−(z − y)

= 4N

∫

d4xd4yd4z
d4pd4qd4k

(2π)12
TrgYM(x+)λ̄(x)Γ+ q−

q2p2k2
gYM(y+) ×

×λ(y)ã(z+)eiq(x−y)eip(x−z)eik(z−y)

= 4N

∫

d4xd4yd4z
d4pd4k

(2π)12
TrgYM(x+)λ̄(x)Γ+G(p, k)gYM(y+) ×

×λ(y)ã(z+)eip(x−y)eik(z−y), (5.6)

where, in the last step, we have shifted the momenta as q → q + p/2, p → −q + p/2, k →
k − q + p/2 and introduced the kernel

G(p, k) :=

∫

d4q

(2π)4
(q + p/2)−

(q + p/2)2(q − p/2)2(k − q + p/2)2
. (5.7)

By performing a similar manipulation like the one above for I1, we finally arrive at

I2 = 4N

∫

d4yTr
(

G(i∂x, i∂z)gYM(x+)λ̄(x)Γ+ã(z+)
)
∣

∣

∣

x=z=y
gYM(y+)λ(y). (5.8)

The effective action is given by the sum I1 + I2 and is governed by the behaviour of the

kernels F (p), G(p, k) given in (5.2) and (5.7).

Now, to obtain the Wilsonian effective action, one would like to integrate out oscilla-

tion modes with momentum above a cutoff scale Λ and replace their contribution to low

momentum modes by introducing new interaction vertices in the effective action. However,

although the separation of modes is well defined for theory with only global symmetries,

the separation into low and high momentum modes does not respect gauge symmetry and

hence is not a well-defined procedure. The subtleties concerned with the definition of

Wilsonian action for gauge theory were recently discussed in [22]. Instead of using a sepa-

ration of momentum modes into low and high frequency ones, [22] proposes an alternative

procedure by separating the loop momentum into low and high region. In general, the

Wilsonian action obtained in this manner contains non-gauge invariant terms. Moreover

since one can always shift the loop momentum, one needs to give a specific prescription

to avoid any ambiguities. For the 1-loop case, the proposed prescription is, by utilizing
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the Feynman parametrization, to first reduce the one-loop integral into a certain standard

form where there is no linear dependence in the loop momentum in the denominator. Then

a IR cutoff on the loop momentum is imposed on this integral. And it has been shown that

all non-gauge invariant terms cancel in the case of supersymmetric gauge theories [22].

We remark that in general one may use other prescription to impose a Wilsonian cut-

off. This corresponds to different definitions of the Wilsonian effective action which are

equivalent in the following sense: the cutoff Λ is introduced as an infrared cutoff when com-

puting the Wilsonian action. It becomes a UV cutoff when one uses the Wilsonian action

to compute correlation functions. Although one may obtain different Wilsonian actions

with different ways to impose the IR cutoff, as long as one uses the same corresponding

prescription for the UV cutoff, one will get the same correlation functions when using the

Wilsonian action to compute correlators.

Now let us introduce the Wilsonian cutoff following the above prescription. The kernels

with high loop momenta modes integrated out are given by

FW (p) :=

∫ 1

0
dα

∫

∞

Λ

d4q

(2π)4
1

(

q2 + α(1 − α)p2
)2 , (5.9)

GW (p, k) := 2

∫ 1

0
dα1dα2dα3

∫

∞

Λ

d4q

(2π)4
δ(α1 + α2 + α3 − 1)[(1 − α1)p− + α3k−]

(

q2+α1(1−α1)p2+α3(1−α3)k2+2α1α3p · k
)3 . (5.10)

As noted above, their contributions to low momentum modes then appear as new interac-

tion vertices in the Wilsonian action.

The kernels FW , GW can be evaluated and give an expansion of the Wilsonian action

in derivatives of the field λ. Let us first start with I1. It is straightforward to compute FW

and we have

FW (p) =
1

16π2

[

C + 1 − 4 + 2y
√

(4 + y)y
sinh−1

(√
y

2

)

]

, y := p2/Λ2,

=
C

16π2
+

∞
∑

n=1

(n− 1)!(n + 1)!

(2n+ 1)!

(−p2

Λ2

)n

, (5.11)

where C = log s|∞Λ2 is an infinite constant. This does not contribute to (5.5). Using

−p2 = ∂2 = −2∂−∂+ + ∂2
i , it is easy to find

I1 =
iN

6π2Λ2

∫

d4xg′2
YM

Trλ̄Γ+∂+λ+ · · · , (5.12)

where · · · are terms of second or higher derivatives of λ. We have kept only terms which

are first order in derivatives of λ since, as we will see in the next subsection, these terms

may be interpreted as due to a nonzero component g++ of the metric.

As for I2, it is easy to evaluate the q-integral and get

GW (p, k) =
1

16π2

∫ 1

0
dα1

∫ 1−α1

0
dα3[(1 − α1)p− + α3k−]

∆ + 2Λ2

(∆ + Λ2)2

=
1

8π2

[

p−
3Λ2

− (6p2 + 6p · k + 7k2)p−
80Λ4

+ · · ·
]

, (5.13)
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where ∆ = α1(1−α1)p
2 +α3(1−α3)k

2 +2α1α3p ·k, as an momentum expansion. We have

dropped the k− term in the last line above since k− = 0 when acting on a function of z+

and hence this term does not contribute in (5.8). Substituting (5.13) into (5.8), we obtain

I2 =
iN

3π2Λ2

∫

d4xg′2
YM

Trλ̄Γ+∂+λ+ · · · , (5.14)

where, again, · · · denotes terms of second or higher derivatives of λ.

Concentrating on the first derivative terms, we find the 1-loop Wilsonian action Γeff,1 =

I1 + I2,

Γeff,1 =
iN

2π2Λ2

∫

d4xg′2
YM

Trλ̄γ+∂+λ. (5.15)

Substituting g2
YM

= 4πeφ, we finally obtain

Γeff,1 ≈ i

∫

d4x
Neφ

2πΛ2
φ′

2
Trλ̄Γ+∂+λ. (5.16)

5.2 Holographic reconstruction of bulk metric

Next we want to find an interpretation of the result (5.16) which will allow us to recon-

struct the bulk metric. We start by noting that two different UV/IR relations have been

considered [18]. In terms of our coordinates, these are

u ∼ 1

Λ
, (5.17)

u ∼ gYMN
1/2

Λ
. (5.18)

In the original AdS5 × S5 case, the two relations are similar except for an overall constant

which depends on the gauge coupling. The holographic relation (5.17) corresponds to a

probe by one of the massless supergravity fields and can be derived by a scaling argument

for the wave equation in the SUGRA background. This relation has been applied to the

counting of entropy [17]. The holographic relation (5.18) is relevant for the effective action

of a D3-brane probe at a distance u and is derived by a stretched open string attached to

the D3-brane.

In our case with a time dependent coupling gYM, the two relations are distinctly dif-

ferent. If we employ the holographic relation (5.18), but more precisely:

u =
gYM(x+)N1/2

Λ

1

π
, (5.19)

then the effective action (5.16) can be written as

Γeff,1 ≈ i

∫

d4x
u2

8
φ′

2
Trλ̄Γ+∂+λ. (5.20)

Compared to (5.18), eq.(5.19) includes an additional numerical factor of π. We remark that

previous tests of the holographic relation is not sensitive to the overall numerical factor.

Here it is fixed by requiring a matching with the bulk metric as we will demonstrate.
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Next let us compute the kinetic term for the fermion field for D3 branes placed at u

of (5.19). Normally a D3 brane sitting at a constant u is 1/2 BPS. It is quite remarkable

that for our supergravity background, a D3-brane sitting at an arbitrary u = u(x+) is also

1/2 BPS. To see this, consider the action for a D3-brane probe with zero worldvolume field

strength,

I =

∫

d4xe−φ
√

− detGµν +

∫

C, (5.21)

where

Gµν =
∂XM

∂xµ

∂XN

∂xν
g
(s)
MN (5.22)

is the pull back to D3-brane worldvolume of the spacetime metric in the string frame

g
(s)
MN = eφ/2gMN and gMN is given by in the static gauge Xµ = xµ, µ = +,−, 2, 3 and with

u = u(x+), it is

Gµν =
eφ/2

u2

(

ηµν +
Ω

2
u2δµ+δν+

)

. (5.23)

It is easy to check that the variation of the Born-Infeld term δI0/δu cancels against the

variation δIWZ/δu of the WZ term. The equation of motion for u is thus

∂µ
δI0

δ(∂µu)
= ∂µ

(
√
−G
u2

(G−1)µν∂νu

)

= 0, (5.24)

which is satisfied for arbitrary u(x+) since (G−1)++ = 0. As for supersymmetry, the

preserved supersymmetry is given by the kappa-symmetry condition

(1 − Γ)ǫ = 0, (5.25)

where

Γ =
−i

4!
√
−G

ǫµ1···µ4∂µ1
XM1 · · · ∂µ4

XM4Γ′

M1···M4
, (5.26)

Γ′

M = EA
MΓA (5.27)

and ΓA are the flat space Γ-matrices. ǫ has to satisfy also the condition (2.15) of the

IIB supergravity background. For our D3-brane, it is easy to obtain

Γ = −i(Γ23 + Γ23−+ − u′Γ23r+). (5.28)

Using Γ+ǫ = 0, this reduces to Γ = −iΓ23. Thus we conclude that the D3-brane is

supersymmetric for the SUSY parameter satisfying the projector conditions (2.15) and

(1 − iΓ23)ǫ = 0.

For such a D3 brane, the bulk metric u(x+) gets an additional contribution and the

induced metric (apart from the factor R2/u2) is

ds24D = −2dx+dx− + dx2
i +

(

1

4
φ′2 + u′2/u2

)

u2dx+2 := ηµνdx
µdxν + ĝ++dx

+2. (5.29)

The curved space gamma matrices γµ are related to the flat space ones by

γ− = Γ− +
1

2
ĝ++Γ+, γ+ = Γ+, γi = Γi. (5.30)
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Therefore among other terms, there will be a kinetic term for the fermion:

− i

2
λ̄γµ∂µλ = − i

2
λ̄Γa∂aλ+

i

4
ĝ++λ̄Γ+∂+λ. (5.31)

And we expect an additional term

i

4

∫

d4x ĝ++Trλ̄Γ+∂+λ = i

∫

d4x
u2

8

(

1

2
φ′2 + 2u′2/u2

)

Trλ̄Γ+∂+λ (5.32)

in the kinetic action of λ in addition to the kinetic term for flat space. Using the UV/IR

relation (5.19), this is precisely equal to (5.20).

Thus we observe that the fermion kinetic term in the one-loop Wilsonian action seems

to know about the bulk metric. A priori, the 1-loop correction may be more general than

being equivalent to turning on the ĝ++ component of the metric. In addition, the functional

form of the ĝ++ component is precisely reproduced. In general, the D3-brane probe action

cannot be identified with the Wilsonian action at the scale (5.18). However, sometimes

there is supersymmetry protecting certain loop amplitudes [18]. In particular it seems to

be the case for the kinetic term of the Wilsonian effective action. This leads us to the

proposal to identify the metric of bulk spacetime from the kinetic term of the Wilsonian

action.

More explicitly, we are proposing a relation between the metric derived from the Wilso-

nian action and the induced metric in the D3-brane probe action

g
(YM)
MN (λ, gs) = g

(Bulk)
MN (λ, gs), M,N = +,−, 2, 3, u. (5.33)

In general, the metric on the left hand side is valid only when ’t Hooft’s coupling is small,

while the quantity on the right hand side is good only when ’t Hooft’s coupling is large.

Our conjecture is that this relation is protected by supersymmetry.

As remarked above, the form of the Wilsonian action is generally dependent on the

scheme implementing the infrared cutoff. An immediate problem arises if one would like

to propose it to be in correspondence with bulk gravitational physics since the latter, at

least the bulk geometry, should be independent of any particular cutoff scheme. In the

above, if we have shifted the loop momenta and then impose the cutoff, this will lead to a

different coefficient, in the 1/Λ expansion, for the p2/Λ2 term of F (p) and for the p−/Λ
2

term of G(p, k). This has the effect of changing the overall coefficient of the effective action

Γeff,1 (5.16). However this will only result in a modification to the formula (5.19) which

matches u with Λ by an overall constant. Thus one can always reproduce the bulk metric

from the Wilsonian effective action of SYM.

Strictly speaking, it is not clear to what extent the supersymmetry can protect loop

correction in matching D3-probe action with the Wilsonian effective action of the boundary

SYM. Let us recall that while the v4 term of SUGRA scattering amplitude is correctly

reproduced in field theory [21], higher momentum dependence is not [20]. We showed above

that the lowest derivative terms fixed by the bulk metric (5.32) are correctly reproduced.

In the effective action there are terms involving higher derivatives of λ. It is not difficult
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to include these higher order contributions. It remains to be seen whether and how these

terms in the Wilsonian effective action correspond to quantum effects on the gravity side.

A similar calculation may be performed at higher loops. For example, the metric

component ĝ++ we calculated above will be modified. Generally it takes the form:

ĝ++ = a(φ, u2)(φ′)2, (5.34)

where we have used the UV/IR relation to replace the 1/Λ2 depenence with u-dependence.

Higher loop amplitudes contribute higher order in powers of gYM, but only a (φ′)2 depen-

dence. In general, following the above procedue, the higher loop corrections in gauge theory

give a 5d metric:

ds2 =
R2

u2
(g(YM)

µν (u, x+)dxµdxν + du2). (5.35)

Due to the complicated u-dependence, the metric will generally not satisfy the Einstein

equation. The dual supersymmetric Yang-Mills provides a framework for computing the

quantum corrections to the supergravity action. This includes higher derivatives corrections

in general. It will be very interesting to see if one is able to reproduce some of the well-

known result, e.g. the R4 term [23], from the SYM theory.

5.3 On resolution of spacetime singularity

The above analysis is performed for a correspondence which is defined over the whole real

line of x+. In case when the SUGRA background is singular, say at x+ = 0, the SUGRA

solution in the two regions x+ > 0 and x+ < 0 are actually two different solutions as,

at least classically, the degrees of freedom don’t talk to each other. A possibility is that

the SUGRA solution restricted to, say x+ > 0, should be matched with the dual SYM

constructed on x+ > 0 4. However, it is also possible that stringy or quantum corrections

to the SUGRA solution will resolve the singularity, and both regions must be included in

the complete theory. The dual SYM theory will then be defined on the whole real line of

x+. In particular, when the SUGRA singularity corresponds to the vanishing of the YM

coupling at x+ = 0, the dual SYM theory is weakly coupled around the point x+ = 0, and

has no reason to break down. What happens in the bulk must be that the stringy and/or

quantum corrections resolve the SUGRA singularity

We will now argue that the second possibility is the generic scenario, whenever the

dual SYM theory is well defined. Despite the fact the two regions are separated by the

singularity, one may still put the two halves of the SUGRA background together and

consider the total theory S = S1 + S2, where S1 or S2 describes the SUGRA on x+ > 0

or x+ < 0 respectively. The dual SYM is now defined on the whole x+ and the Feynman

rules take on the simple form as described before. In this description, SUGRA restricted

to one of the two regions can be described as a subsector of the SYM theory.

Classically, S1 and S2 don’t interact with each other. However, in the SYM, the

replacement of principal value by delta function in the Feynman rules means something

4The Feynman rules will become more complicated. Principal value appears in (4.22) and (4.23) in

addition to the Dirac delta function.
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nontrivial must happen. From the result of the previous subsection, we see that the singular

metric is reproduced by the SYM at the 1-loop level. Taking into account of the corrections

from higher loops, the dual bulk metric becomes (5.35). It is possible that the metric

becomes regular after taking into account of these higher order corrections. A rather

generic argument supports that spacetime singularity is indeed resolved. In the Wilsonian

effective action, since oscillations of frequency above an energy scale Λ are integrated out,

the higher derivative correction to the kinetic term must be such that the background

geometry is smeared over a length scale of ∆x ∼ 1/Λ. A potential singularity in g++ is

thus always resolved for any finite Λ. It will be very interesting to check explicitly if this

is really the case.

6. Discussions

In our perturbative analysis above we have turned off the axion coupling (χ′ = 0) for

simplicity. Since both type IIB SUGRA and N = 4 SYM have the SL(2,Z) symmetry [24]

which mixes the dilaton and axion fields

τ = χ+ ie−φ → τ ′ =
aτ + b

cτ + d
, (6.1)

the extension of our results to a nontrivial axion field background should presumably be

a direct result of the SL(2,Z) symmetry, assuming that there is no technical difficulty in

manifestly preserving this symmetry, as well as gauge symmetry and supersymmetry in

the Wilsonian effective action.

We have shown in this paper that the spacetime metric can be holographically re-

constructed from the kinetic term of the SYM Wilsonian effective action in the leading

order approximation. Higher order corrections to the kinetic term of the Wilsonian action

include quantum corrections (both α′ and gs) to the SUGRA equations of motion. Due to

the nature of the Wilsonian action where high momentum modes are integrated out, it is

expected that singularity in the metric will be resolved. The confirmation of this will be

very interesting.

We remark that in the matrix cosmology proposal [13, 25], it has been suggested that

as one approaches the singularity, the classical picture of spacetime breaks down since

the non-diagonal degrees of freedom of the matrix model get lighter and lighter and their

effects cannot be ignored, and that the singularity could be resolved by including these

light modes in the description. Doing so, spacetime is replaced by nonabelian matrices.

Our proposal is different. In our proposal, we have suggested a mechanism how spacetime

singularity could be resolved by including all the quantum corrections to the Einstein equa-

tion, which in principle could be computed from the gauge theory. After the resolution,

ordinary spacetime is still a valid concept. However, without understanding the nature

and organization principle of these corrections, one does not actually feel one has a good

understanding of the physics involved. It is usually believed that some form of quantized

spacetime and noncommutative geometry will be relevant at very small distance scale. In

the case of noncommutative quantum field theory, one way to think about the noncommu-

tative geometry is that it is an effective and geometrical way to encode the Moyal phase
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factor. It may be possible that the infinite series of quantum corrections follows from some

form of underlying noncommutative geometry. If this really happens, the noncommutative

geometry description will be a better one than the classical spacetime. It is interesting to

explore this possibility.
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